Facial Emotion Recognition Using Conventional Machine Learning and Deep Learning Methods: Current Achievements, Analysis and Remaining Challenges

نویسندگان

چکیده

Facial emotion recognition (FER) is an emerging and significant research area in the pattern domain. In daily life, role of non-verbal communication significant, overall communication, its involvement around 55% to 93%. analysis efficiently used surveillance videos, expression analysis, gesture recognition, smart homes, computer games, depression treatment, patient monitoring, anxiety, detecting lies, psychoanalysis, paralinguistic operator fatigue robotics. this paper, we present a detailed review on FER. The literature collected from different reputable published during current decade. This based conventional machine learning (ML) various deep (DL) approaches. Further, FER datasets for evaluation metrics that are publicly available discussed compared with benchmark results. paper provides holistic using traditional ML DL methods highlight future gap domain new researchers. Finally, work guidebook very helpful young researchers area, providing general understating basic knowledge state-of-the-art methods, experienced looking productive directions work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facial Emotion Recognition using Deep Learning

Facial emotion recognition is one of the most important cognitive functions that our brain performs quite efficiently. State of the art facial emotion recognition techniques are mostly performance driven and do not consider the cognitive relevance of the model. This project is an attempt to look at the task of emotion recognition using deep belief networks which is cognitively very appealing an...

متن کامل

Facial Expression Recognition in Older Adults using Deep Machine Learning

Facial Expression Recognition is still one of the challenging fields in pattern recognition and machine learning science. Despite efforts made in developing various methods for this topic, existing approaches lack generalizability and almost all studies focus on more traditional hand-crafted features extraction to characterize facial expressions. Moreover, effective classifiers to model the spa...

متن کامل

the relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation

with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...

15 صفحه اول

Emotion Recognition Using Multimodal Deep Learning

To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models with SEED and DEAP datasets to recognize different kinds of emotions. We demonstrate that high level representation features extracted by the Bimodal Deep AutoEncoder (BDAE) are effective for e...

متن کامل

Spoken Emotion Recognition Using Deep Learning

Spoken emotion recognition is a multidisciplinary research area that has received increasing attention over the last few years. In this paper, restricted Boltzmann machines and deep belief networks are used to classify emotions in speech. The motivation lies in the recent success reported using these alternative techniques in speech processing and speech recognition. This classifier is compared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information

سال: 2022

ISSN: ['2078-2489']

DOI: https://doi.org/10.3390/info13060268